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Abstract. A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that

are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling

rate, and the sampling duration. Using both statistically simulated and observed data, this paper quantifies the effect of the

volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic

and random errors on the sampling duration. For current generation scanning lidars and sampling durations of about 30 minutes5

and longer during which the stationarity assumption is valid for atmospheric flows the systematic error is negligible but the

random error exceeds about 10 %.

1 Motivation and approach

Coherent Doppler lidars (hereafter called lidars) are increasingly being deployed to measure flow in the atmospheric boundary

layer (ABL) particularly for applications to wind engineering (e.g. Banta et al. (2013)). Accordingly, uncertainties in lidar-10

derived mean wind velocity estimates have been well characterized (Wang et al., 2015; Lindelöw-Marsden, 2009) and methods

and procedures have been developed for error reduction and uncertainty control (Gottschall et al., 2012; Clifton et al., 2013).

However, use of lidar for turbulence measurements, while possible (Mann et al., 2010; Branlard et al., 2013; Newman et al.,

2015), is less established (Sathe and Mann, 2013; Sathe et al., 2015)

Virtually all approaches for deriving the second order moments of the flow are predicated on the radial velocity variance15

(Sathe and Mann, 2013; Newman et al., 2015). Thus, improved understanding of errors in lidar-derived radial velocity variance

estimates is a necessary pre-requisite to the development of robust techniques that will enable the widespread use of lidar for

high-fidelity turbulence measurements. Accordingly, the objectives of this work are to improve the characterization of radial

velocity variance error properties and to develop tools to quantify and reduce these errors. The approach taken and the format

of this paper are as follows: the theoretical framework used herein to quantify errors in radial velocity variance from lidar20

measurements leverages that developed to characterize uncertainties in statistical moments estimated from time series of sonic

anemometer measurements in Lenschow et al. (1994), and is modified to incorporate the effect of volumetric averaging and the

slow sampling rate (Sect. 3). The theoretical findings are then validated using empirical estimates obtained from measurements

of a Galion lidar and three co-deployed sonic anemometers (Sect. 4). The theoretical framework is then used to investigate the

sampling duration required to obtain a pre-defined error magnitude (Sect. 5).25
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2 Preliminaries

A brief description of lidar measurements is given below. For more details see Mann et al. (2008) and Sathe and Mann (2012).

Denoting a wind velocity vector as:

u = (u1,u2,u3) (1)

where u1, u2 and u3 are streamwise, transverse and vertical wind components respectively at position x = (x1,x2,x3). Without5

loss of generality, we can assume that the mean streamwise velocity U1 has been removed and u only consists of the fluctuating

components of turbulence with zero means. A lidar measures the radial velocity (vr) from the Doppler frequency shift induced

by the motion of scatterers along the line of sight (LOS), where the orientation of LOS is defined by the unit directional vector:

n = (cosφsinθ,cosφcosθ,sinφ) (2)

where θ is the azimuth angle that increases clockwise from being zero in positive x2 direction and φ is the elevation angle10

relative to the x1–x2 plane. The radial velocity is the projection of wind velocity on the LOS and is defined as:

vr = n ·u (3)

For a pulsed lidar, each radial velocity is measured over a dwell time of approximately 1.0 sec during which spectra of a large

number of returned signals are averaged to improve the measurement accuracy. When operated with a scan geometry, the lidar

steers its transceiver to probe at different sets of θ and φ. Hence, the sampling interval of two consecutive measurements at one15

location depends on the dwell time, the scan geometry, and the mechanical design of the lidar. The shortest sampling interval

can be achieved with the staring scan for which the lidar measures with fixed θ and φ, that is, the sampling interval is close to

the dwell time. Each measured radial velocity (vR) is estimated from an averaged spectrum acquired over a range gate; hence,

it is a weighted average of radial velocities along the LOS:

vR(s) =

+∞∫

−∞

Q(s′)vr(s− s′)ds′ (4)20

where s denotes the range gate location and s′ is the range distance on the LOS. Note that we use R as the subscript to denote

an average quantity and r to denote a point quantity. The weighting function Q in Eq. (4) can be approximated by the Gaussian

function (Kristensen et al., 2011):

Q(s′) =
1√

2πσQ

exp
[
− (s′− s)2

2σ2
Q

]
(5)

where the standard deviation σQ is a measure of the volumetric averaging size, and it is 15.4 m for the Galion lidar used herein25

(Wang et al., 2015).

The covariance of vr (Rr) and vR (RR) along the x1 direction are defined as follows (Mann et al., 2008):

Rr(r1) = ninjRij(r1e1) (6)
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RR(r1) = ninj

∫ +∞∫

−∞

Q(s′)Q(s′′)Rij
(
(s′′− s′)n + r1e1

)
ds′ds′′ (7)

where s′ and s′′ denote the range distance, Rij is the velocity tensor for the ith and jth velocity components, ni and nj

are the components of n, and e1 and r1 are the unit vector and the separation distance on the x1 axis, respectivley. Note

that i, j = 1,2,3 and summation is assumed over repeated indices. We can map r1 to the temporal lag τ through the frozen5

turbulence hypothesis (Taylor, 1938); r1 = U1τ . The spatial autocorrelation function of vr (ρr) and vR (ρR) separated by

(r1,0,0) are then defined respectively as:

ρr(r1) =Rr(r1)/µ2,r (8)

ρR(r1) =RR(r1)/µ2,R (9)10

where µ2,r =Rr(0) is the variance of vr and µ2,R =RR(0) is the variance of vR. Due to the averaging given in Eq. (4),

RR(0)<Rr(0) and the ratio RR(0)/Rr(0) decreases when the size of volumetric averaging increases (i.e., σQ/L1 increases

where L1 is the integral length scale of u1) (Mann et al., 2008). However, RR(r1) =Rr(r1) when r1 is sufficiently large (e.g.,

r1� L1), because values ofRr(r1) with large r1 are determined by eddies of large sizes that are not affected by the averaging.

As illustrated in Fig. 1, assuming that turbulence is isotropic,RR(r1) starts at a value lower thanRr(r1) at r1 = 0 and gradually15

converges to Rr(r1) as r1 increases. Because Rr(0) and RR(0) are the denominators in Eqs. (8) and (9), respectively, ρR ≥ ρr

and (ρR− ρr) increases with increasing σQ/L1. As a result, if we denote Lr and LR respectively as the integral lenght scales

for vr and vR, LR > Lr and LR/Lr increases with increasing σQ/L1 (Fig. 1). Although quantitative evaluation of RR/Rr

or (ρR− ρr) as a function of r1 requires knowledge of velocity tensors Rij , the qualitative statement above is also true for

non-isotropic turbulence and has implications on the errors of radial velocity variance estimates as demonstrated in the next20

section.

3 Errors in radial velocity variance

In the following, the analysis and notation used are from Lenschow et al. (1994), and we use the word error to refer to the error

of radial velocity variance estimated from time series.

Radial velocity variance is estimated from time series of radial velocity that is related to u(t) which is a stationary and25

ergodic time series generated from a Gaussian process characterized by the mean wind speed U1 and covariance tensors.

Assuming that the mean has been removed from u(t), it can be shown that both vr and vR are also from a stationary and

ergodic time series of a Gaussian process that has the following properties:

– Zero ensemble mean for both vr and vR

– Ensemble variance µ2,r = 〈v2
r 〉 and µ2,R = 〈v2

R〉30
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– Ensemble autocorrelation ρr(τ) and ρR(τ)

The systematic and random errors are derived in the following for a disjunct time series of vr, but the results can be used for

vR. As discussed in more detail in the subsequent text, the difference between vr and vR in terms of the relative errors derives

solely from the difference between ρr and ρR.

Radial velocity measurements from a pulsed lidar naturally form a discrete time series (see Sect. 2). If a pulsed lidar is5

operated with the VAD technique to estimate turbulence statistics (e.g., Sathe et al. (2015)), the lidar samples at least six

locations sequentially and therefore the sampling interval (δt) at one location is at least six times the sampling interval per one

lidar measurement (i.e., δt > 6 sec and is at least 60 times slower than a sonic anemometer sampling at 10 Hz). Hence, the

radial velocity variance from a time series of vr acquired over a period T with a sampling interval δt is estimated from:

µ2,r(T ) =
1
N

N∑

i=1

[
vr(ti)−µ1,r(T )

]2
(10)10

where ti is the time stamp of measurement, N = 1 +T/δt is the sample number, and µ1,r(T ) is the ensemble mean estimate:

µ1,r(T ) =
1
N

N∑

i=1

vr(ti) (11)

The radial velocity variance estimated from Eq. (10) has a systematic error Es,r given by:

Es,r = 〈µ2,r(T )〉−µ2,r =−〈µ2
1,r(T )〉 (12)

Note that 〈µ2
1,r(T )〉 is the sample mean variance; hence the systematic error is always negative, and its relative magnitude is15

given by Box et al. (2015):

es,r =−Es,r

µ2,r
=
S1,r

N2
(13)

where

S1,r =
N∑

i=1

N∑

j=1

ρr(ti− tj) (14)

Each radial velocity variance estimated from Eq. (10) also has a random error relative to the expected value of the estimate20

〈µ2,r(T )〉 that has zero mean and variance defined as:

E2
r,r =

〈[
µ2,r(T )−〈µ2,r(T )〉

]2〉
(15)

Applying the Isserlis relation of a Gaussian process (Lenschow et al., 1994), it can be shown that the relative random error

variance is:

e2r,r =
E2

r,r

µ2
2,r

=
2
N4

S2
1,r +

2
N2

S2,r−
4
N
S3,r (16)25
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where

S2,r =
N∑

i=1

N∑

j=1

[
ρr(ti− tj)

]2
(17)

S3,r =
N∑

i=1

N∑

m=1

N∑

n=1

[
ρr(ti− tm)

][
ρr(tn− ti)

]
(18)

The error expressions derived in Eqs. 13 and 16 are valid for vR variance with the replacement of the autocorrelation and the5

variance by ρR and µ2,R, respectively.

It is clear from Eqs. (13) and (16) that the errors are functions of the sampling interval, the sampling duration and the auto-

correlation function. The averaging defined in Eq. (4) affects the shapes of the radial velocity covariance and autocorrelation

function as illustrated using the isotropic turbulence model (Fig. 1). To investigate the impact of anisotropic turbulence under

realistic atmospheric conditions, wind vectors are statistically simulated from the Risø Smooth Terrain (SMOOTH) spectrum10

model using TurbSim (2016). The simulation domain is 725 × 60 × 12 m ( x1×x2×x3) centered at 80 m above the ground,

and has a horizontal and vertical resolution of 1.0 and 0.5 m, respectively. In these simulations the mean wind speed is 8 ms−1

and the time interval is 0.125 sec. Point radial velocities (vr) are calculated using Eq. (3) for varying LOS orientations in the

horizontal plane relative to the x1 direction (denoted by β) with a fixed elevation angle of 10◦. Lidar-equivalent radial velocities

(vR) are derived by averaging vr on the LOS within ±30 m from the domain center using the weighting function in Eq. (5). As15

expected, variance reduction occurs for all LOS orientations. The difference between RR and Rr in Fig. 2 is similar to that in

Fig. 1, and can be explained using the structure function (Dr) defined as:

Dr(τ) = 2
[
Rr(0)−Rr(τ)

]
(19)

for a given time lag (τ ) and used to represent the energy of eddies of sizes that are smaller than the scale U1τ (Pope, 2000).

Volumetric averaging only attenuates the energy of eddies of small size (Mann et al., 2008). When τ is small relative to the20

integral time scale τ0, volumetric averaging causes Dr(τ) to decrease; hence, RR decreases slower than Rr with respect to

τ per Eq. (19). When τ/τ0 is large (e.g., τ/τ0 > 0.25), RR = Rr, because volumetric averaging has little effect on eddies

of scales of large τ . The difference between RR and Rr results in ρR > ρr for all time lags and LOS orientations (Fig. 2).

Simulations conducted with the Kaimal (IECKAI) spectrum model TurbSim (2016) produce similar results. Errors associated

with the autocorrelation functions ρr/ρR derived from the simulated vr/vR from both models are shown in Fig. 3. Although the25

difference between the errors of variance of vr and vR varies with LOS orientation and turbulence model (i.e. the turbulence

structure), errors associated with vR are consistently higher than those related to vr, indicating volumetric averaging increases

errors associated with radial velocity variance estimates.

Thus both the statistically simulated wind data and physical reasoning provide evidence that volumetric averaging increases

the autocorrelation of radial velocity and inflate the errors in radial velocity variance estimates. Further confirmation will be30

provided in the next section, where data from a field experiment are used to show the effects of volumetric averaging and

sampling duration on the errors.
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4 Errors from observations

4.1 Experiment setup

Measurements presented herein were obtained during the Prince Edward Island Wind Energy Experiment (PEIWEE) con-

ducted at the Wind Energy Institute of Canada (WEICan) site on the North Cape of PEI (Barthelmie et al., 2016). During the

experiment a Galion lidar was configured with 20 kHz pulse repletion frequency and 1.0 sec dwell time to scan at four elevation5

angles (4.8◦, 10.0◦, 15.2◦ and 20.6◦) wiht a fixed azimuth angle of 349◦ such that the 7th range gate of the lidar sampled at

20 m, 40 m, 60 m (and 80 m) above the ground where three Gill Windmaster Pro sonic anemometers were installed on a slender

meteorological mast and sampled at 10 Hz. The sampling interval of the lidar at each elevation angle is about 7.5 sec, which is

similar to the sampling interval of the 6–beam technique used for turbulence measurement in Sathe et al. (2015).The measure-

ments from the sonic anemometers are used to describe the atmospheric turbulence conditions and evaluate the accuracy of the10

lidar measurements.

The lidar conducted automatic cleaning at the beginning of each hour, resulting in a 60 sec gap in the measurements; thus

analysis presented here uses a sample period of one hour. Comparison of the hourly mean and variance of radial velocities from

the lidar and sonic anemometers indicates good agreement (the correlation coefficient = 0.998) with the exception of periods

when the measurements were in the wake of a wind turbine located 60 m southwest of the Galion (Fig. 4). The variance is15

consistently higher (on average by 19%) for the sonic radial velocity than the lidar radial velocity because of the expected

attenuation in variance caused by volumetric averaging.

Stationarity is the fundamental assumption required to obtain theoretical estimates of the errors (as in Sect. 3). Thus, the lidar

radial velocity data are evaluated for stationarity using the approach of Foken and Wichura (1996). Each hourly time series is

evenly divided into 12 subsets. If the mean of the variance of the subsets deviates by less than 30% from the variance of the20

hourly time series, the time series is considered to be stationary. Among all the hourly time series obtained at the three heights,

33 pass the stationarity test and have concurrent sonic data (Fig. 4); therefore, they are used to derive the empirical estimates

of errors.

4.2 Error estimation method

The systematic error es(Tn,T ) and random error variance e2r (Tn,T ) associated with the sampling duration Tn derived from a25

time series of length T are estimated using the stationary bootstrap method (Politis and Romano, 1994) as follows where the

sample numbers associated with T and Tn are denoted as NT and Nn, respectively:

– A new time series of size of NT is constructed by resampling blocks of the original time series. To keep the new time

series stationary, the sizes of the blocks are randomly drawn from a geometric distribution and the locations (the start

of each block) are randomly drawn from a discrete uniform distribution on (1,2, . . . ,NT). The only parameter to be30

specified is the optimal mean block size for the geometric distribution which is found by minimizing the mean squared

error of the estimate of the sample mean variance (Politis and White, 2004).
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– A subset of size of Nn is randomly selected from the new time series and its mean and variance, denoted as µ1(Tn,i) and

µ2(Tn,i), respectively, are recorded. The subscript i denotes that it is the ith resampling.

– Sequences of µ1(Tn,i) and µ2(Tn,i) are acquired after repeating the two steps above for Nb times. The variance of the

sample mean 〈µ2
1(Tn,T )〉is approximated as:

〈µ2
1(Tn,T )〉= 1

Nb

Nb∑

i=1

µ2
1(Tn,i) (20)5

– Per the definition in Eq. (12), the systematic error es(Tn,T ) can be calculated as:

es(Tn,T ) =
〈µ2

1(Tn,T )〉
µ2(T )

(21)

– To calculate the random error variance, the expected value 〈µ2(Tn,T )〉 is first estimated by adding the systematic error

to µ2 which is approximated by µ2(T ), i.e.,

〈µ2(Tn,T )〉= µ2(T )−〈µ2
1(Tn,T )〉 (22)10

Then the random error variance is derived with the following equation:

e2r (Tn,T ) =
1
Nb

∑Nb
i=1

[
µ2(Tn,i)−〈µ2(Tn,T )〉

]2

µ2
2(T )

(23)

4.3 Observed errors

Two methods are used to estimate the errors associated with different sampling durations after the means are removed from the

hourly time series of the point radial velocity from sonic anemometers (vr,sonic) and the lidar-measured averaged radial velocity15

(vR,lidar). The first method, denoted as the Mρ method, is based on Eqs. (13) and (16) and the autocorrelation function derived

from measurements (Fig. 5a). The observed autocorrelation functions show the postulated effect of volumetric averaging on the

autocorrelation function. For all the hourly time series studied here, the autocorrelation of vR,lidar at time lag one (τ = 7.5 sec)

is significantly higher than that of vr,sonic (Fig. 6). At time lag two (τ = 15 sec), the autocorrelation of vR,lidar is still larger

than that of vr,sonic, but the difference is not always statistically significant. Beyond time lag two (τ > 15 sec), the difference20

between the autocorrelation of vR,lidar and vr,sonic vanishes. Because integral time scales of streamwise velocity calculated from

the sonic data are all below 30 sec, we assume that the autocorrelation function values of both vr,sonic and vR,lidar are zero for

time lags larger than 60 sec. The autocorrelation-based systematic error and random error variance will be denoted as es,ρ and

e2r,ρ, respectively. The second method, denoted as Mb method, uses the stationary bootstrap method described in Sec 4.2 and

the resultant systematic error and random error variance will be denoted as es,b and e2r,b, respectively (see the example given in25

Fig. 5).

Consistent with the expectation, error estimates from bothMρ andMb methods are higher for vR,lidar than vr,sonic (Fig. 7) due

to the difference in autocorrelation functions. Both methods give very similar estimates of the systematic error, although there
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are a few cases for which the Mρ method produces higher systematic errors than the Mb method (Fig. 8). The median of es

from vR,lidar is 1.5%/0.9% for T = 30/55 minutes. For the random error, errors from the Mρ method are always higher than the

Mb method due in part to the negative bias in the Mb method (Politis and White, 2004) (Fig. 8). The median of e2r from vR,lidar

is 1.6%/0.9% and 12.7%/9.5% when the error is expressed not as variance but as standard deviation for T = 30/55 minutes,

respectively. Despite the expected difference between the errors from the two methods, both methods consistently confirm the5

trend of decreasing error with increasing sampling duration (Fig. 9), and the relatively close agreement of the results from

the two approaches offers empirical support for the relationships between the errors and the autocorrelation function of radial

velocity as described by Eqs. (13) and (16) for ergodic and stationary time series.

5 Discussions

On the basis of th empirical evidence presented in Sect. 4, in the following we use the theoretical framework presented in Sec. 310

to describe how the error in estimating radial velocity variance from lidar measurement that results from (i) autocorrelation

function, (ii) sampling duration and (iii) sampling interval can be minimized. The first factor (autocorrelation function) is

determined by the underlying wind field, the lidar LOS orientation and the size of volumetric averaging (i.e., σQ in Eq. (5)).

The autocorrelation function needs to be specified to estimate uncertainty in the variance estimates. It typically approximates

an exponential but the precise functional form and the rate of decay varies depending on the flow field. Therefore, in practice,15

error reduction can only be achieved by adjusting the other two factors: sampling duration (T ) and sampling interval (δt), with

assumption or knowledge of the autocorrelation function ρ(τ).

Atmospheric turbulence is rarely isotropic, and for all the hours presented in Sect. 4 the three wind components had non-

equal variance. However, here we use the isotropic turbulence model to model the autocorrelation function noting that it is

always possible to find an integral length scale to reproduce the observed autocorrelation function of radial velocity from lidar20

measurements with the isotropic turbulence model (Pope, 2000) and the the von Kármán spectra (Burton et al., 2011) (e.g.,

Fig. 5). Therefore, we argue that with a proper length scale the isotropic turbulence model can generate an autocorrelation

function that can be used to approximate non-isotropic turbulence conditions, justifying the use of the isotropic turbulence

model here.

Based on the isotropic turbulence model and the von Kármán spectra, the relative systematic error (es) is negligible in25

comparison to the random error. Hence, only the analysis of random error variance (e2r ) or standard deviation (er) is given

below. The magnitude of e2r is not sensitive to the sampling interval (δt). Because the integral time scale (τ0) has the order of

magnitude of 10 sec and δt = 1–10 sec, it is likely that δt/τ0 < 1, implying that in practice the sampling interval is a minor

factor on error reduction (Fig. 10). Increasing the size of volumetric averaging in terms of σQ can cause e2r to increase with a

rate that decreases to nearly zero when the sampling duration increases and the LOS moves from being parallel to perpendicular30

to the wind direction (i.e., β from 0◦to 90◦) (Fig. 11). Therefore, it is also a minor factor on error reduction when the sampling

duration is long. The LOS orientation relative to the wind direction (β) naturally affects the properties of random errors because

the time scale of radial velocity varies with β. For example, for the isotropic turbulence model used here, streamwise velocity

8
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has the largest time scale and as a result errors are large when the LOS is aligned with the wind direction (i.e., β = 0◦) (Figs. 10a

and 11a). In general e2r is not sensitive to β, but it must be acknowledged that the effect of β on e2r will change if a different

turbulence model is applied. The factor that has the most significant effect on error reduction is the sampling duration (Figs. 10

and 11). Thus optimization of lidar operation for retrieval of radial velocity variance can be considered through the lens of

“how long is long enough?” (Lenschow et al., 1994). Provided that the optimum six beam configuration proposed in Sathe5

et al. (2015) (i.e., φ = 45◦) is applied to the Galion lidar for which σQ = 15.4 m under neutral atmospheric conditions over flat

terrain, both the systematic and random errors are almost independent of LOS orientation and surface roughness length which

is used to predict the integral length scale and turbulence intensity (Fig. 12). The systematic error is lower than 1.0% when

T > 30 minutes (Fig. 12). The standard deviation (er) of random errors can be reduced from 12.0% to 9.0% by increasing the

sampling duration from 30 minutes to 60 minutes (Fig. 12), which is consistent with the observed 12.7%–9.5% in Sec. 4.3. The10

standard deviation remains higher than 6.0% when T increases to 120 minutes (Fig. 12). Note that the volumetric averaging

increases er by less than 1.0% because of its relatively small size (σQ/L1 < 0.1). The implication of the analysis above is that,

given that 0.5–1.0 hour is usually the length over which the stationarity assumption is valid in the ABL (Larsén et al., 2016) the

random error in radial velocity variance estimates will likely be around 10.0% and it will be difficult to estimate radial velocity

variance with random errors lower than 5.0%.15

6 Concluding remarks

Use of lidar for estimation of turbulence fields if realized could revolutionize atmospheric boundary layer characterization

studies and has applications to many fields. Accurate radial velocity variance estimates are necessary (but not sufficient) to

obtaining robust turbulence statistics from lidar. The accuracy of radial velocity variance estimates and their relationship to

pseudo-point measurements from sonic anemometers are determined by (i) the applicability of the stationarity assumption,20

(ii) the effect of volumetric averaging on the radial velocity autocorrelation function, (iii) the sampling interval, and (iv) the

sampling duration. Of these factors (i) the stationarity assumption is determined only by atmospheric conditions but is most

likely to be achieved within the period of one hour in environments where the surface conditions are homogeneous. The second

factor (ii) the volumetric averaging is dictated by the probe length that is determined by the lidar properties; it causes the radial

velocity autocorrelation function to increase and thus increases errors in radial velocity variance estimates. Large probe length25

can result in high errors. The third factor (iii) the sampling interval is determined partly by the scan geometry which is needed

to sample radial velocities with different LOS orientations to reconstruct the wind field, and partly by the lidar configurations

of e.g. the dwell time of each measurement and the scanning speed. Errors are not sensitive to the sampling interval because

the sampling interval for lidar turbulence measurement is commonly smaller than the turbulence integral time scale. The last

factor (iv) the sampling duration, which together with the sampling interval determines the number of samples available for30

radial velocity estimates, can only be extended to the limit implied by the stationarity assumption, but in principle as sampling

duration icreases the errors associated with the radial velocity variance decreases.
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Given these constraints on radial velocity variance estimates, this paper uses theories and empirical observations to show

that for sample periods for which stationarity can reasonably be asserted (approximately one hour), the systematic error can be

reduced to a level lower than 1% and the standard deviation of random errors will be around 10%. These errors will propagate

through to estimation of turbulence statistics from lidar measurements and thus provide a fundamental limit on the likely

accuracy of those estimates.5
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Table A1. Nomenclature.

β Angle between the wind direction and lidar laser beam [◦]

δt Lidar radial velocity samping interval [sec]

θ Lidar azimuth angle [◦]

µ1 Ensemble mean of a random variable

µ1(T ) Estimated mean of a random variable over a mpling duration T

µ1,r(T ) Estimated mean of the point radial velocity over a sampling duration T [m s−1]

µ2 Ensemble variance of random variable

µ2(T ) Estimated variance of a random variable over a mpling duration T

µ2,R Ensemble variance of the averaged radial velocity [m2 s−2]

µ2,r Ensemble variance of the point radial velocity [m2 s−2]

µ2,r(T ) Estimated variance of the point radial velocity over a sampling duration T [m2 s−2]

ρR Autocorrelation of the averaged radial velocity

ρr Autocorrelation of the point radial velocity

σQ Standard deviation of radial velocity weight function [m]

τ Autocorrelation time lag [sec]

τ0 Integral time scale [sec]

φ Lidar elevation angle [◦]

Dr Structure function [m2 s−2]

E2
r,r Random error variance in variance estimates using point radial velocities [m4 s−4]

Er,s Systematic error in variance estimates using point radial velocities [m2 s−2]

e1 Unit vector in streamwise direction [m]

e2r Relative variacne of random errors

e2r,ρ Relative variance of random errors estimated using autocorrelation function

e2r,b Relative variance of random errors estimated using the bootstrap method

e2r,R Relative variance of random errors in variance estimates using averaged radial velocities

e2r,r Relative variance of random errors in variance estimates using point radial velocities

es Relative systematic error

es,ρ Relative systematic error estimated using autocorrelation function

es,b Relative systematic error estimated using the bootstrap method

es,R Relative systematic error in variance estimates using averaged radial velocities

es,r Relative systematic error in variance estimates using point radial velocities

L1 Integral length scale of the streamwise velocity [m]
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Table A1. Continued.

LR Integral length scale of the averaged radial velocity [m]

Lr Integral length scale of the point radial velocity [m]

N Radial velocity sample number

Nb Repetition time of bootstrap sampling

NT Sampling numbers obtained during sampling duration T

Nn Sampling numbers obtained during sampling duration Tn

n Unit directional vector of lidar line of sight

Q Radial velocity weighting function

Rij Wind velocity covariance tensor [m2 s−2]

RR Covariance of the averaged radial velocity [m2 s−2]

Rr Covariance of the point radial velocity [m2 s−2]

r1 Spatial lag in the streamwise direction [m]

s Lidar range gate location [m]

s′ Lidar range distance [m]

s′′ Lidar range distance [m]

T Sampling duration of a full time series [sec]

Tn Sampling duration of a subset of time series [sec]

t Measurement time stamp [sec]

U1 Mean streamwise velocity [ms−1]

u Wind velocity vector [m s−1]

u1 Streamwise velocity component [m s−1]

u2 Transverse velocity component [m s−1]

u3 Vertical velocity component [m s−1]

vR Averaged radial velocity [m s−1]

vR,lidar Radial velocity measured by lidars [m s−1]

vr Point radial velocity [m s−1]

vr,sonic Radial velocity measured by sonic anemometers [m s−1]

x Position vector vector [m]

x1 Coordinate in the streamwise direction [m]

x2 Coordinate in the transverse direction [m]

x3 Coordinate in the vertical direction [m]

z0 Surface roughness length [m]
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Figure 1. Examples of turbulence statistics of point radial velocity (vr) and averaged radial velocity (vR) derived from Eqs. (6) and (7)

using the isotropic turbulence model (Pope, 2000) and the von Kármán spectra (Burton et al., 2011) with streamwise velocity U1 = 8 ms−1,

turbulence intensity = 12.5 %, and lidar elevation angle = 10◦. The covariance and autocorrelation functions for vr (Rr and ρr) and vR (RR

and ρR) for azimuth angle θ = 30◦ are shown in (a) and b, respectively, as functions of r1/L1 where r1 is the spatial lag in streamwise

direction and L1 is the integral length scale of streamwise velocity. RR and ρR are presented in terms of σQ/L1 where σQ represents the

size of volumetric averaging (see Eq. (5)). The effect of volumetric averaging on the integral length scale of radial velocity is presented in

(c) in terms of the relationship between LR/Lr and σQ/L1 for different θ values where Lr and LR are the integral length scales for vr and

vR, respectively.
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Figure 2. Covariance (Rr and Rr on the left) and autocorrelation functions (ρr and ρr on the right) of the point radial velocity (vr) and

averaged radial velocity (vR) derived from statistically simulated time series using TurbSim (2016) with the SMOOTH model and the default

parameter values. Covariance and autocorrelation functions are presented for four different LOS orientations here as indicated by the angle

of LOS relative to the mean wind direction (β). The time lag (τ ) is normalized by τ0 which is the first time when ρr = 1/e at β = 0. A fixed

elevation angle of 10◦ is used.
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Figure 3. The relative systematic error (es) and random error variance (e2r ) derived from the autocorrelation functions of the simulated point

radial velocity (ρr) and averaged radial velocity (ρR) from the SMOOTH model in (a) and (c) and from the IECKAI model in (b) and (d)

(TurbSim, 2016) as functions of the angle between the LOS and mean wind direction (β). The sampling duration is 100τ0 where τ0 is the

first time when the point radial velocity autocorrelation crosses 1/e at β = 0◦.
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Figure 4. Time series of (a) hourly mean and (b) variance of radial velocity (vR) from the lidar (markers) and the sonic anemometers (lines)

and time series of (c) hourly mean wind speed and (d) direction from the sonic anemometers at three different heights. The mean and variance

of radial velocity from the hourly time series classified as stationary using the method of Foken and Wichura (1996) are shown by the filled

markers. The dash line in (d) gives the wind direction under which the sonic anemometers are in the center of the wind turbine wake.
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Figure 5. An example of the autocorrelation and errors in radial velocity variance estimate using data from the hour starting at 2015-05-19

04:00 at 40 m height. The autocorrelation functions derived from the lidar and sonic measurements are presented in (a). Systematic errors (es)

and random errors (e2r ) are presented in (b) and (c), respectively. Errors associated with both lidar and sonic anemometer data are estimated

using the autocorrelation function from measurements (denoted by Mρ) and the stationary bootstrap method (denote by Mb) described in

Sect. 4.2.
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Figure 6. Comparison of the values of radial velocity autocorrelation function from the sonic data (ρsonic) and the lidar data (ρlidar) at the first

time lag δt = 7.5 sec. The 95% confidence interval of ρlidar is indicated by the error bar.
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Figure 7. Comparison of the systematic error estimated from the sonic data (es,sonic) and from the lidar data (es,lidar) in (a) for a sampling

duration of 30 minutes and (c) a sampling duration of 55 minutes, and comparison of the random error estimated from the sonic data (e2r,sonic)

and from the lidar data (e2r,lidar) in (b) for a sampling duration of 30 minutes and (d) a sampling duration of 55 minutes. The method used

to estimate the errors is indicated by the subscript in the legend where ρ denotes the Mρ method using the autocorrelation function and b

denotes the Mb method using the stationary bootstrap method. The solid lines are the 1:1 lines.
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Figure 8. Comparison of the lidar radial velocity systematic errors es,ρ and es,b estimated using the autocorrelation (Mρ) method and the

stationary bootstrap (Mb) method, respectively, for (a) a sampling duration of 30 minutes and (c) a sampling duration of 55 minutes, and

comparison of the lidar radial velocity random errors e2r,ρ and e2r,b estimated using the Mρ method and the Mb method, respectively, for (b)

a sampling duration of 30 minutes and (d) a sampling duration of 55 minutes. The measurement heights can be found in the legend.
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Figure 9. Relationships between (a) the systematic error (es) and the sampling duration and (b) the random error (e2r ) and the sampling

duration for radial velocity variance estimated from the lidar data using the autocorrelation method (gray lines) and the stationary bootstrap

method (boxplots). The errors are normalized by the respective errors estimated from the autocorrelation method with the sampling duration

of 55 minutes.
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Figure 10. Contours of the relative variance (e2r ) of random errors of radial velocity variance from lidar measurements estimated with the

isotropic turbulence model (Pope, 2000) and the von Kármán spectra (Burton et al., 2011) as a function of the sampling duration (T ) and the

sampling interval (δt) normalized by the integral time scale (τ0) for four different β values where β is the angle between the LOS and the

wind direction. The weighting function (Eq. (5)) representing the volumetric averaging has a standard deviation σQ = 0.2L1 where L1 is the

streamwise integral length scale. The other input parameters include the elevation angle φ = 10◦ and the mean wind speed U1 = 8 ms−1.
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Figure 11. Contours of the relative variance (e2r ) of random errors of radial velocity variance from lidar measurements estimated with

the isotropic turbulence model (Pope, 2000) and the von Kármán spectra (Burton et al., 2011) as a function of the sampling duration (T )

normalized by the integral time scale (τ0) and the volumetric averaging size (σQ) normalized by the streamwise integral length scale (L1)

for four different β values where β is the angle between the LOS and the wind direction. The other input parameters include the sampling

interval δt = 0.5τ0, the elevation angle φ = 10◦ and the mean wind speed U1 = 8 ms−1.
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Figure 12. Variation of the systematic error (es) and variance of random error (e2r ) with respect to the sampling duration (T ) in (a) and (b),

respectively, predicted from the isotropic turbulence model (Pope, 2000) and the von Kármán spectra (Burton et al., 2011) at 80 m height

under neutral conditions for surface roughness lengths (z0) from 10−3 m to 100 m and LOS orientations β from 0◦ to 90◦ where β is the

angle between the LOS and the wind direction. The blue lines with squares and the dark lines are the mean error values from the entire range

of z0 and β for the averaged and point radial velocity variance, respectively. The red shaded areas denote the range of errors of the averaged

radial variance. The equation used to estimate the integral length scale can be found in Wang et al. (2015) with a mean wind speed of 7 ms−1

and the Coriolis parameter of 10−4 s−1. The elevation angle φ = 45◦.
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